## **Practice Problems on Limits and Continuity**

1 A tank contains 10 liters of pure water. Salt water containing 20 grams of salt per liter is pumped into the tank at 2 liters per minute.

- 1. Express the salt concentration C(t) after t minutes (in g/L).
- 2. What is the long-term concentration of salt, i.e.,  $\lim_{t\to\infty} C(t)$ ?

2 Find the values of *a* and *b* that make f(x) continuous for all real *x*.  $f(x) = \begin{cases} be^{x} + a + 1, & x \le 0\\ ax^{2} + b(x+3), & 0 < x \le 1\\ a\cos(\pi x) + 7bx, & x > 1 \end{cases}$ 

- 3 Sketch the graph of a function f with the following properties:
  - $\lim_{x\to 1} f(x) = 2$ , but f(1) = 1
  - $\lim_{x\to 3} f(x) = +\infty$
  - $\lim_{x\to 2^+} f(x) = -1$ ,  $\lim_{x\to 2^-} f(x) = 3$

• 
$$\lim_{x\to+\infty} f(x) = -2$$

•  $\lim_{x\to-\infty} f(x) = -\infty$ 

4 Show that the equation  $\sqrt{x-5} = \frac{1}{x+3}$  has at least one real solution.

5 Consider the rational function

$$f(x) = \frac{x^5 - x^4 - 2x^3}{x^4 - 3x^3 - x^2 + 3x}$$

- For what values of a does f have a removable discontinuity at a? What is  $\lim_{x\to a} f(x)$  at those a?
- For what values of *a* does *f* have an infinite discontinuity at *a*?
- What is  $\lim_{x\to+\infty} f(x)$ ?

(Hint: Factor the numerator and the denominator.)

6 Find the value of *a* such that

$$\lim_{x \to -1} \frac{2x^2 - ax - 14}{x^2 - 2x - 3}$$

exists. What is the value of the limit?